If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+2b-1=0
a = 1; b = 2; c = -1;
Δ = b2-4ac
Δ = 22-4·1·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{2}}{2*1}=\frac{-2-2\sqrt{2}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{2}}{2*1}=\frac{-2+2\sqrt{2}}{2} $
| 8(4-5m)=-4+8m) | | 12+7j=14.2+9j1.8 | | 6x+7-113=180 | | 4(x+14)=80 | | 3-4x/4=6x+1/5 | | x-10+31=180 | | 9=x-1.2 | | -15=a3 | | -3+x+5=-4x+3-8 | | 4e+1=123 | | 7(-2x+5=119 | | 6=12y-6y | | 12x-15=-3x+6 | | 12x-15=-3x+5 | | 4x-2=2.5 | | 12+z/10=31 | | (T-8)+(t-4)+(t-45)=180 | | T-8+t-4+t-45=180 | | 43+41y+96=180 | | 2x^2+8x+18=6 | | 0.5(10x+25)=3.9(0.2x+5) | | 4(2c-1)-5=6c+9 | | 3x=9+13-x2 | | -5(x+3)-42=6-38 | | -8-6=7x+3-6x | | x=0.02-0.02x | | 20x-15=4x | | 5x+14=2x+20 | | (6x-15)=(5x+6) | | (5x+11)=(3x+29) | | 8x+22=24 | | 6/x-4=-5/x+7 |